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A B S T R A C T

Stock price trend prediction is a fascinating but difficult research topic. Recently, GNN-based models have
been continuously proposed, which are believed to be more effective since they consider the information about
stocks themselves and the information between stocks. However, the graph data are often static, unstructured
and not all-inclusive, which cannot dynamically reflect all relationships between stocks. Therefore, we propose
a novel model PriceExploration-Network (PE-Net), effectively utilizing both temporal and cross-sectional
information contained in price to predict the price trend. PE-Net only requires the price data effectively saving
the trouble of fetching alternative data and is able to capture the dynamic implicit relations between stocks by
combining clustering techniques and GAT architecture. The effectiveness of PE-Net is examined on real-world
S&P 500 constituents and the results demonstrate that PE-Net can outperform state-of-the-art models w.r.t.
both accuracy and AUC.
1. Introduction

Stock market is an important part of human economic activities.
There are plenty of methods created to describe the price movements or
select the most profitable stocks, and all of these are related to one topic
price prediction, which is undoubtedly full of difficulties and challenges.
Traditional financial theories represented by EMH (Efficient Market
Hypothesis) (Fama, 1965) and random walk theory (Osborne, 1959)
state that the stock price is unpredictable and investors cannot acquire
excess return by mining historical information. However, more and
more theories and practices make challenge on this view (Jegadeesh
and Titman, 1993; Lo and MacKinlay, 2011; Haugen and Lakonishok,
1987), which also motivates researchers to explore more kinds of price
prediction methods.

In previous studies, dominant methods consider this problem from
the perspective of time series. They treat the price sequences as time
series and use different types of models to discover the features hidden
in the temporal structure. For instance, statistical time series analysis
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models are the most classic and widely used, represented by ARIMA
(Autoregressive Integrated Moving Average model) (Ariyo et al., 2014),
Markov Switching (Hamilton, 1989) etc. In addition, statistical ma-
chine learning techniques are also introduced into this field. They
feed various indicators of individual stocks at each time point into
models like SVM (Support Vector Machine) (Lee, 2009) and Decision
Tree (Khaidem et al., 2016) to forecast the future price trend. Recently,
with the booming of deep learning, neural network methods have
gained growing attention from researchers. Typically, RNN (Recurrent
Neural Network) (Rumelhart et al., 1986) and its variants such as LSTM
(Long Short Term Memory) (Hochreiter and Schmidhuber, 1997) and
GRU (Gated Recurrent Unit) (Cho et al., 2014) can be well used to
deal with the price prediction problem due to its design for processing
sequential data.

Despite the plethora of existing methods based on temporal informa-
tion, the lack of leveraging the cross-sectional information is a common
defect. However, according to some literatures in finance (Moskowitz
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Fig. 1. The schematic diagram of the conception of our work.
and Grinblatt, 1999; Cohen and Frazzini, 2008), Momentum Spillover
effect is widespread among different companies, which indicates that
the return of a listed company’s stock can be influenced by other
companies similar or linked to it. The interrelation between companies
is often presented in a graph structure, but the non-Euclidean property
of this type of data makes it hard for traditional models to process. For-
tunately, with the emergence of GNN (Graph Neural Network) (Zhou
et al., 2020) models such as GCN (Graph Convolutional Network) (Kipf
and Welling, 2016) and GAT (Graph Attention Network) (Veličković
et al., 2017), researchers start to utilize these powerful tools to exploit
the cross-sectional features of stocks for better forecasting effect (Chen
et al., 2018; Feng et al., 2019; Hsu et al., 2021; Chen et al., 2021).
Nevertheless, the graphs they are based on are mainly existing or
explicitly-defined graphs such as sector-industry network or supply
chain network. These graphs are often static and the dynamic inter-
actions between stocks cannot be fully exploited from them. Also, the
data for these graphs is even uneasy to obtain and process, which makes
it more difficult to apply and extend these methods.

In this paper, we transform the price prediction problem into a
binary classification problem, i.e., each stock is classified into a positive
or negative category to represent the price rise or fall respectively. As
it is shown in Fig. 1, our conception is to combine both the temporal
and cross-sectional features of stocks but by solely mining stocks’
historical price data. Specifically, we propose a neural-network-based
model PriceExploration-Network (PE-Net). PE-Net can be divided into
four modules, preprocessing module, temporal embedding module, cross-
sectional embedding module and prediction module respectively. In pre-
processing module, we extract the time-series motifs contained in price
sequence and reconstruct the sequence to eliminate noise. Then, in
temporal embedding module, we use GRU (Cho et al., 2014) to embed
each stock’s adjusted price sequence into a representation space to
acquire the temporal embedding. After that, in cross-sectional embedding
module, we put the computed temporal embedding vector of each
stock into a GNN framework to update the embedding based on the
correlation of stocks on cross-section. Noteworthily, in this module, we
firstly use time series clustering techniques to construct a stock graph
structure simply based on adjusted price sequences, instead of using a
priori relationship which is popular in mainstream methods. Then, we
apply GAT (Veličković et al., 2017) to process this graph at both intra-
and inter-cluster level and update stocks’ embedding vectors. Finally,
2

in our prediction module, we concatenate all the embedding vectors for
each stock to obtain the final representation and use a fully-connected
layer to map it into a two-dimensional vector, which contains the
probabilities of upward and downward movements. To sum up, the
contribution and significance of our work is three-fold:

• A novel neural-network-based model PE-Net is proposed, which
provides a complete framework to dynamically represent stocks
by exploring the temporal and cross-sectional features contained
in price sequences and predict the stocks’ future price trend
accordingly.

• At temporal level, PE-Net reconstructs price sequences by summa-
rizing the temporal motifs to capture the price evolving patterns,
which greatly contributes to the extraction of temporal features.
At cross-sectional level, PE-Net possesses a hierarchical design
for dynamic relationship modeling and feature integration by
combining clustering technique and GAT, which effectively ex-
ploits the latent relationship between stocks and benefits the
information aggregation on cross-section.

• PE-Net is tested on S&P 500 constituents and compared with
other models. The experimental results illustrate that PE-Net can
outperform the state-of-the-art models w.r.t. both accuracy and
AUC (Area Under Curve). Also, the ablation study and module
test demonstrate the effectiveness of the specific module design,
and the trading simulation discusses the application of PE-Net to
real-world trading.

The rest of the paper is organized as follows. Section 2 summarizes
the related work on price prediction using neural network methods.
Section 3 introduces our model PE-Net, its components and usage in
detail. Section 4 describes the experiments and analyzes the results.
Finally, we conclude our work in Section 5.

2. Related work

Using neural network methods to make stock price prediction has
become a focused research area in recent years. Surveys Jiang (2021)
and Kumbure et al. (2022) provide a comprehensive review of the
application of machine learning techniques, especially neural network
methods, in stock market prediction. In 1990s, Matsuba first introduced
ANN (Artificial Neural Network) into this field (Matsuba, 1991). He
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Fig. 2. The schematic diagram of PE-Net. As is shown, the entire workflow of PE-Net is implemented by four modules: preprocessing module, temporal embedding module,
cross-sectional embedding module and prediction module.
believed that the process of stock price movement was a complex
non-linear function, and ANNs could be used to simulate this process
to forecast price trend. Due to the sequence property of stock price
series, RNN (Rumelhart et al., 1986) and its variants are the most
widely used models currently. The basic idea behind these methods is
to feed stock feature time series into a RNN-based model and output
a representation vector for downstream task. The stock features used
can come from many sources, e.g. raw price data, technical indicators,
fundamental factors, sentiment, news etc. (Yao et al., 2018; Li et al.,
2017, 2020b). Additionally, there are also some works expanding the
classic RNN models and proposing new model architectures to better
suit the prediction task. For instance, Cheng et al. (2018) proposed
an attention-based LSTM model to predict price movement and design
trading strategies. Zhang et al. (2017) proposed a novel recurrent
architecture State-Frequency Memory (SFM) to capture the uncovered
patterns of price time series in both time and frequency domains.
Wu et al. (2021) combined LSTM with CNN (Convolutional Neural
Network) to extract useful features from leading indicators like futures
and options in order to gain better predictive effectiveness.

Thanks to the rise of GNN (Zhou et al., 2020) models in the past five
years, more and more researches focus on using GNN models to exploit
information contained in inter-stock relation data, which is often pre-
sented in graph structure. For instance, Chen et al. (2018) constructed a
graph for a pool of Chinese stocks based on their investment facts and
applied graph convolutional network model to process it. Feng et al.
(2019) proposed a temporal graph convolution model to deal with a
heterogeneous relationship graph, which contained two kinds of edges
representing sector-industry relation and wiki-company-based relation
respectively. They aimed at recommending the highest yielding stocks
and tested their model on NYSE and NASDAQ stock pools. Chen et al.
(2021) improved the original GCN model and combined it with Dual-
CNN (Li et al., 2020a) to capture the features of both individual stock
and the stock market. In addition to GCN (Kipf and Welling, 2016) and
its variants, GAT (Veličković et al., 2017) has also been considered by
the researchers. Hsu et al. (2021) argued that not all of the relations
between stocks were accessible so the pre-defined graphs could not
fully reflect stocks’ interactions. Therefore, they designed a FinGAT
model to extract the hidden relationship between stocks using GAT
framework. As a summary, Wang et al. (2021) categorized different
types of financial graphs and the relevant GNN-based methodology
applied in recent years. In general, these GNN-based models rely on a
graph structure to describe the interaction or similarity between stocks
and apply GNN methods to extract structural features, which will be
used later to update the node representation usually coming from the
output of RNN-based models.
3

3. Model architecture

In this section, we introduce the architecture of PE-Net in detail.
The whole framework is presented in Fig. 2. As it shows, PE-Net
consists of four modules, which are preprocessing module, temporal
embedding module, cross-sectional embedding module and prediction
module respectively. In general, the whole workflow goes like this:

• At each time point, PE-Net preprocesses each stock’s price se-
quence over a period of time in preprocessing module to cap-
ture its historical trend and outputs the adjusted sequences for
downstream task.

• PE-Net feeds the adjusted sequences into temporal embedding mod-
ule and outputs the temporal representation for each stock in
stock pool. This representation contains the temporal information
of each stock and is also used as initialization for subsequent
operations.

• In cross-sectional embedding module, PE-Net firstly clusters all the
stocks and constructs a graph based on the clustering result.
The graph contains two kinds of edges representing intra- and
inter-cluster relations respectively. Then, PE-Net extracts cross-
sectional information from the graph structure and accordingly
updates each stock’s representation vector, which is the output of
this module.

• In prediction module, PE-Net concatenates each stock’s temporal
and cross-sectional embedding vector to gain its final representa-
tion, which is then fed into the Softmax-MLP layer to output the
forecasted price up and down probabilities.

With this design, PE-Net is able to mitigate the effects of noise
contained in raw price sequences, represent each stock by comprehen-
sively considering its temporal and cross-sectional characteristics with
no need for predefining the graph structure and predict the future price
trend based on the representation result.

3.1. Preprocessing module

Stock price data is commonly known to have a low signal-noise
ratio, which makes it relatively difficult to recognize useful patterns
directly from the raw data. Therefore, using some de-noising methods
to preprocess the price data will be helpful for downstream task.
Enlightened by technical analysis in practice, we hope to summarize
the frequent patterns, or more exactly temporal motifs, contained in each
stock’s price sequence and reconstruct the sequences using extracted
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motifs as it is recommended in Wen et al. (2019). A brief schematic
diagram of this module can be seen in the above Fig. 2.

Specifically, the motif-extraction algorithm we use is named BeatLex
proposed by Hooi et al. (2017). The basic idea of this algorithm is
segmenting the original price sequence into subsequences and assign-
ing a certain motif for each subsequence. Given subsequence 𝑃𝑎∶𝑏,
we calculate the MDTW (Modified Dynamic Time Warping) distance
(see Hooi et al. (2017)) between it and every motif in current motif
set. If the smallest MDTW distance does not exceed the threshold,
the corresponding motif is assigned to this subsequence and updated
with the information of this subsequence to ensure that the motif
can dynamically reflect the information of newly-added subsequence.
Otherwise, if the smallest MDTW distance exceeds the threshold, a new
motif is created based on this subsequence and is appended to the motif
set. In BeatLex algorithm, the length of the subsequence ranges from
𝑠𝑚𝑖𝑛 to 𝑠𝑚𝑎𝑥. However, in our model, we limit the length to a certain
value in order to obtain the motifs of the same length. This operation
is necessary for the following sequence reconstruction and clustering
operation.

After summarizing the motifs, we reconstruct each price sequence
based on its own motif set. Specifically, the motifs of all subsequences
of this price sequence is concatenated in temporal order to generate the
final adjusted motif-based sequence.

3.2. Temporal embedding module

After acquiring the reconstructed motif sequence of each stock, we
then set out to exploit the temporal characteristics contained in these
adjusted sequences. We adopt GRU (Gated Recurrent Unit) (Cho et al.,
2014) to help finish this task. GRU is a widely used variant of RNN
models. Compared with another popular model LSTM (Hochreiter and
Schmidhuber, 1997), GRU has a simpler internal architecture and fewer
parameters, so it is easier to train and to some degree reduces the risk
of overfitting.

On each time point, the adjusted sequences of all the stocks on
cross-section are fed into the GRU model. For each stock’s sequence,
the calculation inside the GRU is shown in Eqs. (1)–(4):

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑠𝑡]), (1)

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑠𝑡]), (2)

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ̃ ⋅ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑠𝑡]), (3)

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡, (4)

where 𝑠𝑡 denotes the element of input sequence at time step 𝑡, ℎ𝑡−1
denotes the output of the hidden layer (a.k.a. hidden state) at previous
time step 𝑡 − 1, 𝑟𝑡, 𝑧𝑡, ℎ̃𝑡 are the intermediate variables, ℎ𝑡 denotes the
final output of hidden layer at time step 𝑡 and 𝜎, 𝑡𝑎𝑛ℎ are two non-linear
activation functions defined in Eqs. (5) and (6):

𝜎(𝑥) = 1
1 + 𝑒−𝑥

, (5)

𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
. (6)

As we can see, each element 𝑠𝑡 in the adjusted sequence goes
through three phases of computation inside the GRU. Firstly, as the
input of time step 𝑡, 𝑠𝑡 is sent to compare with the output of previous
time step ℎ𝑡−1 to decide how much historical information needs to
be kept and meanwhile 𝑠𝑡 together with ℎ𝑡−1 is also used to deter-
mine how much historical information needs to be updated. These
two computations are both finished with the combination of a linear
transformation and a sigmoid activation. Secondly, an intermediate
variable ℎ̃𝑡 is computed based on time step 𝑡’s input 𝑠𝑡, the proportion
of 𝑠𝑡 needed to be kept and previous time step’s output ℎ𝑡−1. The ℎ̃𝑡
can be viewed as the preliminary output of this time step. Finally, ℎ̃𝑡
and ℎ𝑡−1 are fused together proportionally to generate the output of this
4

time step.
To improve the ability of this module, we employ a two-layer GRU
in our design, in which the second layer’s input is the hidden state of
the first layer. The final output of this module is the last layer’s last
hidden state for each stock on cross-section.

3.3. Cross-sectional embedding module

This module is designed to capture the correlation between stocks
and update the representation for each stock. Firstly, PE-Net clusters
all the stocks in the stock pool based on their respective adjusted
sequences, which are the output of preprocessing module. Then, PE-Net
derives a graph structure from the clustering result. Finally, PE-Net uses
GAT to analyze the graph and outputs the updated representation for
each stock.

3.3.1. Graph construction
To start with, we apply SOM (self-organizing maps) (Kohonen,

1990) to cluster all the stocks on cross-section. For any input sample,
i.e. the adjusted sequence of any stock in our case, the goal is to find
one neuron best matching the input sample among all the neurons in
the competition layer. The matching is measured by Euclidean distance
between the input sample and weight vector. For instance, stock 𝑖’s
adjusted sequence is (𝑥1𝑖 , 𝑥

2
𝑖 ,… , 𝑥𝑘𝑖 ) and the weight vector between it

and any neuron 𝑗 is (𝑤1
𝑖𝑗 , 𝑤

2
𝑖𝑗 ,… , 𝑤𝑘

𝑖𝑗 ), so the distance can be written as
𝐷(𝑠𝑖, 𝑛𝑗 ) =

∑𝑘
𝑛=1(𝑥

𝑛
𝑖 −𝑤𝑛

𝑖𝑗 )
2. As such, we calculate the distance between

stock 𝑖 and each neuron to find the neuron having the minimal distance
to stock 𝑖 and set this neuron as the best-matching neuron. Stock 𝑖 is
hen assigned to this neuron and the corresponding weight vector is
pdated accordingly.

The update rule is based on the idea that the weights of neurons in-
ide the best-matching neuron’s neighborhood are updated accordingly,
hile the weights of those outside remain the same. In our model, we
se Gaussian function to set the neighborhood and the whole update
rocess is shown in Eqs. (7) and (8):

𝑖,𝑐 = 𝑒𝑥𝑝(−‖𝑐 − 𝑖‖2∕2(𝜎)2), (7)
𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝛼(𝑡) ⋅ ℎ𝑖,𝑐 ⋅ (𝑥(𝑡) −𝑤𝑖(𝑡)), (8)

here 𝑡 denotes the current iteration step, ℎ𝑖,𝑐 denotes the distance
etween neuron 𝑖 and best-matching neuron 𝑐, 𝑥(𝑡) denotes the current
nput sample and 𝛼(𝑡) denotes the learning rate, which decays over
ime. The training process of SOM is done through iteration and a
ule of thumb for this, as is mentioned in Kohonen (1990), is at least
00 times the number of competition neurons. Also, the number of
ompetition neurons is recommended to set as 5 ∗

√

𝑁 , where 𝑁
denotes the number of samples (Tian et al., 2014). Noteworthily, with
SOM to do clustering, the total number of clusters does not need to
be set in advance. The adaptivity of SOM allows it to determine the
cluster number by itself and automatically adjust the number according
to different input samples.

After clustering, we next move on to construct a graph based on
it. Specially, two types of relations are defined, which are intra-cluster
and inter-cluster relations respectively. Within each cluster, there is a
connecting edge between each two stock nodes, which represents the
intra-cluster relation between them. Similarly, this process can also be
repeated at cluster level. we can also repeat this process at cluster level.
Every cluster is connected with each other and the edge indicates the
existing inter-cluster relation. Remarkably, the whole graph is not fully-
connected because these two types of edges cannot be treated equally.
A schematic diagram of the final cluster-based graph is as shown in
Fig. 3(A).

3.3.2. Cross-sectional embedding
In the previous section, a heterogeneous graph is defined with two

types of edges. However, what relations these edges represent and



Engineering Applications of Artificial Intelligence 126 (2023) 106849B. Pang et al.
Fig. 3. The schematic explanation of the cross-sectional embedding module: subgraph (A) presents the structure of the derived cluster-based graph; subgraph (B) demonstrates
the two-fold embedding happening on cross-section.
how we quantify them are still not clear. Also, the existing explicit
relationship data is mostly static, which cannot reflect the dynamics
of correlations in real world. Therefore, we choose not to define any
explicit relations but apply GAT (Veličković et al., 2017) method
to dynamically learn the latent intra- and inter-cluster correlations.
Specifically, the use of GAT in this module is two-fold.
A. Intra-cluster embedding

Firstly, GAT is applied at intra-cluster level, which is shown in
Fig. 3(B)(a). For center node stock 𝑖, its representation vector is updated
according to Eq. (9):

𝐸𝑚𝑏𝑒𝑑𝐼𝑛𝑡𝑟𝑎𝐶 (𝑠𝑖) = 𝜎(
∑

𝑠𝑗∈𝑁(𝑠𝑖)
𝛼𝑖𝑗 ⋅𝑊 ⋅ 𝐸𝑚𝑏𝑒𝑑𝑡𝑠(𝑠𝑗 )), (9)

where 𝑁(𝑠𝑖) is the generalized neighborhood of stock 𝑖 (including all its
neighbors and itself), 𝐸𝑚𝑏𝑒𝑑𝑡𝑠(𝑠𝑗 ) is the temporal embedding of stock
𝑗, 𝜎 is the non-linear activation function and 𝛼𝑖𝑗 is the attention-based
weight vector whose computation is presented in Eqs. (10) and (11):

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗 ), (10)

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇 ⋅ [𝑊 ⋅ 𝐸𝑚𝑏𝑒𝑑𝑡𝑠(𝑠𝑖) ∥ 𝑊 ⋅ 𝐸𝑚𝑏𝑒𝑑𝑡𝑠(𝑠𝑗 )]), (11)

where ∥ denotes the concatenation operation.
Noteworthily, 𝑒𝑖𝑗 is a measure of the similarity of node 𝑖 and 𝑗,

and researchers can also select other types of measure such as dot
product or even a neural network layer. In sum, after this step, the
embedding vector of each stock is updated by effectively aggregating
the information of its one-order neighbor.
B. Inter-cluster embedding

Secondly, GAT is applied at inter-cluster level, which is exhibited
in Fig. 3(B)(b). The key step here is the vector representation for each
cluster. For a given cluster, we perform an element-wise maximization
operation on the embedding vectors of all the stocks in this cluster and
use the computed vector as the representation of this cluster. Notably,
element-wise mean operation is also viable, so are other methods which
can in some way reflect the node information in it. After representing
each cluster as vector, GAT is then used to update each cluster’s
embedding vector according to Eq. (12):

𝐸𝑚𝑏𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝐶 (𝑐𝑖) = 𝜎(
∑

𝑐𝑗∈𝑁(𝑐𝑖)
𝛼𝑖𝑗 ⋅𝑊 ⋅ 𝐸𝑚𝑏𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝐶 (𝑐𝑗 )). (12)

Finally, each stock’s intra-cluster embedding is concatenated with
the embedding of the cluster where it belongs to generate the final
cross-sectional representation. This operation is presented in Eq. (13).

𝐸𝑚𝑏𝑒𝑑𝑐𝑠(𝑠𝑖) = [𝐸𝑚𝑏𝑒𝑑𝐼𝑛𝑡𝑟𝑎𝐶 (𝑠𝑖) ∥ 𝐸𝑚𝑏𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝐶 (𝑐)], (13)
∀ stock 𝑠 and 𝑠 ∈ cluster 𝑐.
5

𝑖 𝑖
In practice, we also apply multi-head attention mechanism in this
module, which can enhance GAT’s ability to extract structural in-
formation (Veličković et al., 2017). The multi-head’s result of intra-
cluster GAT is concatenated together while that of inter-cluster GAT
is averaged element-wisely.

3.4. Prediction module

By combining the results of temporal embedding module and cross-
sectional embedding module, PE-Net finally represents each stock accord-
ing to Eq. (14):

𝐸𝑚𝑏𝑒𝑑(𝑠) = [𝐸𝑚𝑏𝑒𝑑𝑡𝑠(𝑠) ∥ 𝐸𝑚𝑏𝑒𝑑𝑐𝑠(𝑠)]. (14)

Then, a fully-connected layer is applied to map each embedding vector
into a two-dimensional vector and the Softmax function is applied
to calculate the expected price up and down probabilities. Softmax
function is a non-linear function widely used in deep learning, which
can be taken as a generalization of sigmoid function. Its definition is as
shown in Eq. (15):

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑣𝑗 ) =
𝑒𝑣𝑗

∑𝐾
𝑖=𝑘 𝑒

𝑣𝑘
, (15)

where 𝑣 is a 𝑘-dimensional vector and 𝑣𝑘 denotes its 𝑘th component.

4. Experiments

4.1. Experimental settings

4.1.1. Dataset
We use daily price data on 198 constituent stocks of S&P 500 for a

total of 700 days from 2011 to 2013 (Cheng and Li, 2021). The whole
dataset is divided into 3 parts, out of which the first 560 days’ data is
used for training, the following 70 days is used for validation and the
last 70 days is used for test.

4.1.2. Learning and evaluation
Following the paradigm for binary classification problem, we assign

two labels i.e. {0, 1} to all the samples and apply cross-entropy as our
loss function. Specifically, if the closing price of the current day is less
than that of the previous day, then we label this day as 0, otherwise 1.
For each input sample (𝑥1, 𝑥2,… , 𝑥𝑛), its label depends on the label of
day 𝑛+ 1, which is 1 if day 𝑛+ 1’s label is 1, and 0 otherwise. As such,
we label all the samples and select Cross Entropy as the loss function,
whose definition is shown in Eq. (16):

𝐿𝑜𝑠𝑠(𝑝, 𝑞) = −
∑

𝑝(𝑖)𝑙𝑜𝑔(𝑞(𝑖)), (16)

𝑖
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Fig. 4. Comparison between PE-Net and baseline models on S&P 500 constituents w.r.t accuracy and AUC. It demonstrates that PE-Net is the best-performing model in terms of
both these evaluation metrics.
where 𝑝 denotes the groundtruth distribution and 𝑞 denotes the esti-
mated or predicted distribution. We select the most widely-used Accu-
racy and AUC (Area Under Curve) as our evaluation metrics.

The hyperparameters of PE-Net are input sequence length 𝑙 rep-
resenting the time span of historical price data fed into it and the
temporal embedding dimension 𝐷 acting as a bridge between the
temporal embedding and cross-sectional embedding modules. We apply gird
search to find out the optimal hyperparameter combination. And in
order to eliminate the randomness, under each hyperparameter setting,
we train PE-Net for 10 times and select the best 5 performing models
in terms of their performances on validation set. Then, we average the
experimental results of the best 5 models with optimal hyperparameters
on test set and use the average as the final reported result.

4.1.3. Software and programming
Our whole experiments are conducted with Python and Python-

based deep learning framework Pytorch. Especially, the construction
of GNN parts is completed using Pytorch-based library DGL. Most
computations involving neural networks are done on NVIDIA GeForce
GTX 1650.

4.1.4. Baseline models
To better examine the effectiveness of PE-Net, we compare it with

some other models. The list of baseline models is shown below:

• GRU: single GRU model without any motifs or cluster design. It
only accepts the raw price sequence as input (Cho et al., 2014);

• GAT: single GAT model without any motifs or cluster design. It
directly takes the raw price sequence as the initial node represen-
tation and the graph structure it uses is a fully-connected graph
derived from the stock pool (Veličković et al., 2017) ;

• ED-LSTM: a state-of-the-art event-driven LSTM model, which ef-
fectively utilizes the fundamental and media news information to
make prediction (Li et al., 2020b);

• TGC: a state-of-the-art GNN-based model, which applies a GCN-
like model to deal with a pre-defined heterogeneous graph, whose
edges represent sector-industry and wiki-based relations respec-
tively (Feng et al., 2019);

• CNN-BiLSTM-AM: a state-of-the-art model utilizing CNN, bi-
directional LSTM, and attention mechanism to extract various
stock features for prediction (Lu et al., 2021);

• FinGAT: a state-of-the-art model, which applies GNN to exploit
latent relations between stocks based on a sector-industry net-
work (Hsu et al., 2021);
6

• PE-Net: the model proposed in this paper.
4.2. Experimental results

4.2.1. Comparison
The comparison result between our model PE-Net and baseline

models is shown in Fig. 4. As we can see, PE-Net achieves the best
performance in terms of prediction accuracy. The two most important
modules of PE-Net are temporal embedding and cross-sectional embed-
ding modules, which are based on GRU and GAT models respectively.
However, the accuracy results of GRU and GAT indicate that simply
using either of them is not enough to well predict the price trend
compared with our model, whose accuracy outperforms them by 3.9%
and 7.9% respectively. This is a strong proof of the effectiveness of
PE-Net leveraging both temporal and cross-sectional information. Fur-
thermore, PE-Net is still the relatively better one w.r.t. accuracy, when
competing with the state-of-the-art models. The improvement of PE-Net
compared with ED-LSTM is significant, even though ED-LSTM considers
more types of information except price, like fundamental indicators and
media textual data. In addition, PE-Net also outperforms TGC w.r.t.
accuracy, albeit only by 0.8%, but TGC is built on a pre-defined graph,
which consists of the information of sector-industry and firm’s events.
This is also the case for FinGAT, which is based on a pre-defined sector-
industry graph but is also outperformed by PE-Net significantly. For
CNN-BiLSTM-AM, the gap between it and PE-Net on accuracy is even
larger, which is another strong proof of the superiority of PE-Net. As for
AUC, the situation is quite similar. PE-Net outperforms all the baseline
models except TGC, which shares the same AUC result with it. In brief,
the proposed PE-Net is the best-performing one w.r.t. both accuracy
and AUC metrics.

Given that PE-Net only needs price data to make predictions, the
experimental result described above is somewhat encouraging. It proves
that we can simply use price data to achieve comparable or even better
prediction effect than other methods, where the data used is often more
extensive and complex. From the perspective of model architecture, PE-
Net uses SOM and GAT to dynamically capture the latent correlations
and information transferring weights between stocks. This design is
more reasonable and effective than using explicit relationship networks
represented by TGC and FinGAT, which are usually static and not all-
inclusive. Also, from the perspective of data usage, PE-Net provides a
new angle for stock prediction problems, which is to more efficiently
extract the various information contained in price data rather than to
look for alternative data. On the one hand, alternative data is relatively
difficult to collect and process, e.g. the media textual data used in
ED-LSTM and wiki-relation data used in TGC. On the other hand,
considering the low signal-noise ratio of financial data, more types

of data tend to be accompanied by more noises, which might in turn
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Fig. 5. Experimental results on test set under different hyperparameter settings.
affect the performance of prediction. Noteworthily, the motif-extraction
method applied in PE-Net is aimed to eliminate noise. Therefore, this
might be another critical reason for the good performance of our model.

4.2.2. Hyperparameter sensitivity
As it is mentioned before, there are two hyperparameters in PE-

Net: input sequence length 𝑙 representing the time scale of historical
price data considered and temporal embedding dimension 𝐷, which
is a key intermediate variable connecting the temporal embedding and
cross-sectional embedding modules. Since the input series are used to
predict the price movement for the next 1 day, the time period to look
back should not be set too long. Thus, we select 𝑙 from {20, 30, 40},
which means the numbers of trading days in 1, 1.5 and 2 months
respectively. As for temporal embedding dimension 𝐷, we select it
from {30, 60, 120, 150}. Note that the selection is entirely empirical
because there is rarely any theoretical guidance here. Due to the use
of 6 attention heads in our GAT design, the actual intermediate rep-
resentation dimension ranges from 180 to 900. The accuracy and AUC
results of PE-Net under different hyperparameter settings on test set are
presented below in Fig. 5. The two subplots in the upper half illustrate
the variation of accuracy and AUC with the change of 𝑙, while the
subplot in the lower half presents the position of each hyperparameter
combination with accuracy and AUC as the horizontal and vertical
coordinates.

As we can see, both these hyperparameters can cause changes
in the performance of PE-Net and these changes are reflected dif-
ferently in different metrics. As for accuracy, when 𝑙 is fixed at 40,
the performance of PE-Net gets better as the embedding dimension
increases. However, this is not the case when 𝑙 is set as 20 or 30, where
the model’s accuracy performance experiences a fluctuation with an
increasing 𝐷. Similarly, the fluctuation also appears w.r.t AUC as the
hyperparameter varies. The highest AUC value for 𝑙 = 20 is achieved as
𝐷 reaches 120, but for 𝑙 = 30 and 40, the spike emerges when 𝐷 is set as
150. Additionally, if we review accuracy and AUC together, the optimal
hyperparameter setting would be (𝑙 = 20, 𝐷 = 120), in which case PE-
Net accomplishes a good level in terms of both these metrics. However,
7

if we focus on one specific metric and try to maximize it, we can turn
to other hyperparameter combinations like (𝑙 = 40, 𝐷 = 150) for the
best AUC and (𝑙 = 30, 𝐷 = 30) for the best accuracy. Overall, PE-Net
can be adapted to different scenarios by changing its hyperparameter
settings, and the most appropriate setting totally depends on the user’s
target like the best accuracy, the best AUC or the balance between
them. Notably, in the previous Comparison section, the results we show
is under the (𝑙 = 20, 𝐷 = 120) setting.

4.2.3. Ablation study
The comparison results of PE-Net with GRU and GAT presented in

Comparison section have already illustrated the usefulness of the com-
bination of our temporal and cross-sectional embedding modules. Here,
we work further to examine the effectiveness of other parts of PE-Net
through ablation study, i.e. motif extraction in preprocessing module,
intra-cluster embedding in cross-sectional embedding module and inter-
cluster embedding in cross-sectional embedding module. The details of
each model are described as follows:

• PE-Net: the model proposed in this paper;
• without Motif-Extr.: the rest of PE-Net removing the preprocess-
ing module, which takes the raw price sequence directly as the
input;

• without Intra-Embd.: the rest of PE-Net removing the intra-
cluster embedding operation, which directly uses the output of
temporal embedding module as the initial representation for inter-
cluster embedding;

• without Inter-Embd.: the rest of PE-Net removing the inter-
cluster embedding operation, which directly transfers the output
of intra-cluster embedding into the final fully-connected layer
without adding inter-cluster information.

We test them on the same S&P 500 dataset under 3 sets of hy-
perparameter settings i.e. (𝑙 = 20, 𝐷 = 120), (𝑙 = 30, 𝐷 = 30), and
(𝑙 = 40, 𝐷 = 150), which are the optimal, the best accuracy and the best
AUC combinations respectively. The experimental results are shown in
Table 1.
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Fig. 6. The performance of PE-Net with motif-extraction, 10-day moving average and 5-day moving average on S&P 500 constituents.
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Table 1
Comparison between PE-Net and ablation-study-related models on S&P 500
onstituents under different hyperparameter settings.

(l = 30, D = 30) (l = 20, D = 120) (l = 40, D = 150)

Accuracy AUC Accuracy AUC Accuracy AUC

PE-Net 0.537 0.512 0.535 0.532 0.529 0.542
without Motif-Extr. 0.528 0.511 0.522 0.514 0.518 0.523
without Intra-Embd. 0.513 0.487 0.514 0.503 0.503 0.506
without Inter-Embd. 0.515 0.497 0.528 0.513 0.521 0.510

As it illustrates, PE-Net with complete architecture remains the best
erforming one among all the tested models w.r.t. accuracy and AUC
nder every hyperparameter setting. And the removal of intra-cluster
mbedding operation leads to the most drastic drop on both metrics,
ndicating that this operation is crucial to our model. From the angle
f finance, it further implies that leveraging the information of the
eer group of a firm, in which ‘‘peer’’ is not necessarily explicitly
efined, can help us predict that firm’s price movement. As for inter-
luster embedding, its absence also causes the decrease of accuracy
nd AUC, and this decrease is particularly sharp on accuracy when PE-
et is under (𝑙 = 30, 𝐷 = 30) setting. Finally, the results also point
ut that our preprocessing module is of great importance as the model
ithout it cannot perform as well as the complete model. This is also
nderstandable from finance since frequent price pattern or trend is
ften what we really need and care about instead of the exact price
alues.

.2.4. Effectiveness of motif extraction
The significant drop in both accuracy and AUC of PE-Net after

emoving preprocessing module has already demonstrated the indis-
ensability of this module. In this section, we continue to examine
he effectiveness of this module. In financial data processing, moving
verage is one of the most commonly used operations, especially when
ealing with price data. Therefore, we apply 5-day and 10-day mov-
ng average to preprocess price sequence respectively, and feed the
rocessed data into PE-Net as a comparison with the original motif-
xtraction operation. Fig. 6 shows the performances of PE-Net with
otif-extraction, 10-day moving average and 5-day moving average.
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r

As we can see, the advantages of PE-Net with motif-extraction
ver those with moving average are obvious, especially w.r.t AUC.
his result can be regarded as a solid proof that the motif-extraction
esigned in PE-Net is a better trend-capturing method than the classic
oving average operation in this scenario. We argue that this might be

ecause the aim of moving average is to smooth the data and therefore
t is not capable of capturing the short-term trend when the whole
equence is relatively volatile.

.2.5. Effectiveness of stock clustering
Recall that the graph construction method we propose in cross-

ectional embedding module is based on clustering, where the historical
djusted sequences are fed and processed by SOM to cluster the stocks.
n this section, we aim to analyze the clustering results in depth and
ry to figure out whether such results make sense. In particular, we
ompare the clustering results with real-world sector classification to
iscover the connections between them.

We focus on the stock pools during test period containing 198
tocks within 70 days. According to GICS (Global Industry Classifi-
ation Standard), all these stocks can be grouped into 12 sectors,
hich are Financials, Consumer Discretionary, Industrials, Health Care,

nformation Technology, Consumer Staples, Utilities, Energy, Materials,
ommunication Services, Medical and Real Estate respectively. Based
n this, we review the sector group for each stock in each cluster each
ay and count the total number of times different sectors co-occur in
he same cluster. Then, we apply row-max–min normalization to the
ounting result and visualize it with a heatmap, which is exhibited in
ig. 7. In this heatmap, each row represents the normalized number of
imes a certain sector co-occurs with the others during test period and
he color becomes lighter as the number of co-occurrences increases.

As we can see, our clustering result reflects the correlation between
ectors to some extent. For instance, in Industrials row, Financials,
tilities and Communication Services have the lightest color except

ndustrials itself, which implies that these 3 sectors are most rel-
vant to Industrials. This is reasonable because the business chain
f companies in Industrials sector involves finance, communication
ervices and public utilities. In addition, we can also see a relatively
trong correlation between Health Care and Medical in Health Care

ow, which corresponds to the fact that these two sectors often share
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Fig. 7. Row-normalized co-occurrence.
the common customers and businesses. Furthermore, in the last row,
which represents the case for Real Estate, we can find that Real Estate
is strongly correlated with Financials and Consumer Discretionary.
Considering that these 3 sectors all have a close tie with households’
income and consumption, this is also understandable. Overall, this co-
occurrence analysis partly shows that our clustering results can reflect
the basic sector relevance in real world.

In addition to the macro sector perspective, we also analyze the co-
occurrences between individual stocks. Fig. 8 shows the co-occurrence
statistics charts of CMS (CMS Energy Corp.) and KR (The Kroger Co.).
As is demonstrated in Fig. 8(A), HON (Honeywell International Inc.),
SRE (Sempra Energy) and FE (FirstEnergy Corp.) are the three compa-
nies having the most co-occurrences with CMS Energy Corp. And except
for HON, which belongs to Industrials sector, all other companies
belong to Utilities sector including CMS itself. Moreover, even though
Industrials and Utilities are two different sectors, they have a close
connection with one another as is mentioned before. And if we turn to
Fig. 8(B), we can find the similar situation. While the targeted company
KR (The Kroger Co.) belongs to Consumer Staples sector, the other 3
companies marked, EL (The Estee Lauder Companies Inc), MO (Altria
Group Inc) and COST (Costco Wholesale Corp), all belong to Consumer
Staples sector as well. These results fairly illustrate that our clustering
method has captured the sector information of individual stock.

In a word, according to the above analysis, we argue that the
clustering method we propose in PE-Net manages to extract the real-
world sector information contained in individual stock’s price sequence
without using any sector data beforehand. This is a strong proof of the
rationality of the clustering result and the effectiveness of our stock
clustering method. Additionally, it is also worth noting that sector
information is only part of the information captured by our clustering
method and it must also capture plenty of other potential information,
which is not easy to explain due to the complexity of neural networks.
9

4.3. Trading simulation

In order to test whether the predictive ability of PE-Net can con-
tribute to the trading in practice, we conduct a trading simulation on
the test set. Note that PE-Net aims to predict the price trend of the
next day, so it can be used for market timing, which is an investment
strategy that determines when to enter or exit a market by predicting
future price movements. Specifically, we form an investment pool to
include all those 198 stocks and compare the PE-Net based market
timing strategy (Trade according to the trading signal generated by
PE-Net, i.e., buy if the price is predicted to rise and sell otherwise.
And all stocks are traded with equal weight.) with the buy-and-hold
strategy (Buy all stocks with equal weight at the beginning of the test
period, hold them, and sell them at the end of the test period.) The
value invested in both these strategies is unit 1 at the beginning of
the test period. Let {𝑣0, 𝑣2,… , 𝑣𝑇 } denote the sequence of daily value
during the test period. Then, the daily return sequence can be expressed
as {𝑟1, 𝑟2,… , 𝑟𝑇 }, where 𝑟𝑡 is calculated as (𝑣𝑡−𝑣𝑡−1)∕𝑣𝑡−1. A total of five
evaluation metrics are considered, which are

• Return: the annualized return defined as

( 1
𝑇

𝑇
∑

𝑡=1
𝑟𝑡) ∗ 252;

• Volatility: the annualized volatility defined as
√

√

√

√( 1
𝑇

𝑇
∑

𝑡=1
(𝑟𝑡 − 𝑟)2) ∗ 252,

where 𝑟 is the mean of {𝑟1, 𝑟2,… , 𝑟𝑇 };
• MDD: the maximum drawdown defined as the largest consecutive

value drop from a peak to a trough in {𝑣 , 𝑣 ,… , 𝑣 };
1 2 𝑇
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Fig. 8. (A) The co-occurrences between CMS Energy Corp. and the other stocks; (B) the co-occurrences between The Kroger Co. and the other stocks;.
Table 2
The performance of the market-timing strategy and buy-and-hold strategy on test set.

Return Volatility MDD Sharpe Calmar

market timing 0.268 0.303 4.89% 0.884 5.478
buy-and-hold 0.221 0.338 5.23% 0.655 4.236

• Sharpe: the annualized Sharpe ratio defined as Return∕Volatility1;
• Calmar: the annualized Calmar ratio defined as Return∕MDD.

The performance of the market timing strategy and buy-and-hold
strategy is presented in Table 2. As is shown, with PE-Net to do
market timing, the investment can achieve greater profits with less risk
compared with the investment simply based on buy-and-hold. It can be
seen that the total return of market timing strategy is higher than that
of buy-and-hold strategy. Also, the risk of the market timing strategy,
whether measured by Volatility or MDD, is less than that of buy-and-
hold strategy. Moreover, when profit and risk are considered together,
the PE-Net based market timing strategy is still the one that performs
better, supported by the higher Sharpe and Calmar ratio.

5. Conclusion

Stock prediction is a widely concerned problem in both academia
and industry, but it is also full of difficulties and challenges. In this
paper, we propose a novel neural-network-based model PE-Net and
demonstrate its good prediction performance through extensive ex-
periments on real-world dataset. The data needed by PE-Net is only
historical price and the whole model is designed to extract rich in-
formation from price data. PE-Net firstly detects the motif structures
contained in each price sequence and reconstructs the sequence to
better reflect the price trend. Then, PE-Net clusters all the stocks
based on their own adjusted sequences to derive a stock graph and
uses neural-network-based methods to extract both temporal and cross-
sectional information which is eventually used to calculate the price
up and down probabilities. We test our model on S&P 500 constituents
and the experimental results illustrate that our model outperforms the
state-of-the-art models w.r.t. both accuracy and AUC. Furthermore, we
also conduct ablation study and module effectiveness test to examine
the utility of each module in PE-Net. And the test results confirm the
effectiveness and indispensability of our specific module design.

In the future, this work could be extended in two aspects. The motif-
extraction algorithm could be extended to capture the price trends on
different time scales instead of single scale. This would contribute to the
operations like clustering and temporal embedding. Furthermore, the
clustering method could also be extended, e.g. clustering stocks based
on different time spans, different frequencies or a combination of them.

1 In standard Sharpe ratio calculation, the Return needs to be subtracted
by a risk-free rate. Here, we assume the risk-free rate is equal to 0.
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